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Abstract

Rectangular and circular membranes have been modelled as discrete arrays of mass points connected
less springs. Based on Newton’s principles and Hooke’s law, the movement of such membranes has bee
lated. All vibrational modes, as known from closed form solutions of the corresponding wave equations, c
excited, with deviations from theoretical values of no more than a few percent. This approach can be u
develop an intuitive understanding of vibrating membranes. The phenomenon of regular vibrational mode
vides a suitable starting point for a thorough mathematical treatment.

In a more general sense this topic demonstrates the possibility that elasticity is no longer a matter of high
ematical demand. The true nature of the “rigid body” as an unrealistic but perfect model can convincingly be
onstrated.
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1. Introduction
As has been demonstrated recently, the vibrating-me

brane problem can be used as a rather appropriate exam
to demonstrate the power of computer algebra syste
(CAS) like Axiom Maple, Mathematica, Derive etc. [1].

This approach, however, depends on a well-develop
mathematical ability on the part of the learner and on his
her willingness to accept such an abstract and demand
path of explanation, where the solution of differentia
equations serves as a description of real world phenome
in this case the vibrating modes of an elastic membrane

In the following we would like to show that the same
results can be achieved with much less mathematical eff
and in a more direct fashion, based only on Newton’s pri
ciples and linear elastic forces.

2. Theoretical Background
Our system consists of a plane membrane, in princip

of any shape, homogeneously stretched by a tension
given as force per unit length. The membrane has a masµ
per unit area and the boundary is clamped.

For small vibrations and in the absence of extern
forces the wave equation, describing the motion of the d
ferent points (coordinatesx, y in the plane of the mem-
brane), is [2]:
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is the Laplace operator, in rec-

tangular co-ordinatesx, y, and is the velocity of
the waves in the elastic membrane. We have denoted
s(x,y,t)the transverse displacement of any point relative
the position when the membrane is at rest.

For membranes held along the edge (s=0, as bound
condition), we have to find standing-wave solutions of th
wave equation which have nodes along the boundary of
membrane. For simple shapes (rectangular or circu
membranes), the standing wave solutions or normal mod
of vibration are usually worked out using a set of curvilin
ear coordinates in which the edge of the membrane for
one of the coordinate axes. In many cases we can use s
aration of variables which simplifies the problem.

In the following the main characteristics of the mode
for the rectangular and circular membranes are describ
With our simulation tool xyZET [3] we can in principle
experiment with membranes of any shape. The results
this article, however, are restricted to rectangular and c
cular geometries which allows us to compare our sim
lated results with theoretical solutions of the related wa
equation.
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Rectangular Membrane (borders fixed: s=0 in x=0,a
and y=0,b)

By separating the variables (s=X(x)Y(y)exp(iωt), the
standing wave modes for this case can be expressed as
lows:

, multiplied by a harmonic time

dependence sin(ω0t), where the resonance frequency,ω0,
will depend on the mode of vibration (values of kx, ky)

.

The boundary conditions require that kx, ky can have

only the following values: , where m,n

(the mode indexes) can take only integer values.
The resonance frequency for this (m,n) mode will be

with .

Circular Membrane (border fixed: s=0, for r=a)
In this case we can use polar co-ordinates (r,θ). The spa-

tial part of the wave function will be of the form R(r)Θ(θ).
The boundary conditions will act specifically on R(r
which will be a Bessel function Jm(kr) with zeros at well
known (tabulated) values xmn (m for the function and n for
the nth. zero).

This leads to the relation kmna=xmn to force a zero at
r=a, the radius of the membrane. This results in the follow
ing relation for computing the angular frequency assoc
ated with the different modes:

, wherev is the velocity of the wave in the

membrane.
The solution of our problem for the mode (m,n) is, bas

cally, of the form:
.

A dependence with sin(mθ) is also possible, giving rise
to the existence of 2 degenerate modes for each m (exc
for m=0). In general, a linear combination of both mode
will be excited.

3. The simulation program xyZET
At IPN, a simulation program, named xyZET, has bee

developed whose key feature is the visualization of inte

acting objects in 3d1 [3] [4]. The effects of all classical
forces can be simulated.

The implemented algorithm is force based. For ea
single particles of all those placed within the cube, the su
of all applied forces is determined. By integrating Newton
second law stepwise, the acceleration, the change in vel
ity and the resulting displacement is calculated and d

1. Demo version download: http://www.ipn.uni-kiel.de/eng-
lish/projekte/a7/a7.1/xyzet/mainpage_e.html
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played by deleting and redrawing the particles at its ne
positions.

Figure 1 shows circular and rectangular membranes
modelled in xyZET, where the particles at the border a
fixed and all particles are connected by springs with the
nearest neighbours.

Placing particles and connecting particles by springs
done by repetitive mouse clicks. The cube which su
rounds the objects can be rotated to show the system fr
different perspectives.

All relevant parameters such as charge, mass, spr
constant and spring length can be set and an external e
tric field can be simulated, changing in time and with va
iable intensity, period and direction.

Figure 1 Membranes as modelled within xyZET

4. Experiments
To compare the simulation results from xyZET with

those predicted theoretically, we have experimented w
rectangular and circular membranes.

To do this, the mechanical characteristics of the mem
brane like tension T, and densityµ, have to be determined.
This information can be obtained from data availab
within xyZET.
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Once these values have been measured, the wave ve
ity, v, in the membrane, the eigenvalue and eigenfuncti
(resonant frequency and spatial distribution) for eve
mode can be computed as shown in the previous pa
graph.

Results for a rectangular membrane
The membrane we used was made up of 21x21 pa

cles, homogeneously distributed in a rectangular gr
From the measured values for tension T and densityµ the
wave velocity for mode 11, 21 and 33 was computed
well as the resonant frequenciesω0 of the different modes.

By charging a few single particles, positioned at sym
metry points of the expected mode and applying an ext
nal electric alternating field withω0 as frequency, the cor-
responding mode can be excited.

The agreement between the calculated resonant f
quencies and the one measured with xyZET is betwee
and 5% for the lowest order modes. The spatial distributi
of some of these modes are shown in Figure 2.

Figure 2 Display of the vibrating membrane for differen
modes

Results for a circular membrane
The membrane we used was again made up of 21x

particles, homogeneously distributed over a circular are
The modes displayed in Figure 3 were excited and
velocity compared with the theoretical values.

mode 11 mode 21

mode 33

mode 01

mode 11

mode 02
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Figure 3 Display of a circular membrane vibrating in
different modes

The differences between the simulated and theoreti
results was always less than 6%.

5. Discussion

Didactical aspects
The topic “vibrating membranes” is a specific one an

primarily only of interest for a specialised branch of eng
neering. For lectures in physics this topic is usually le
aside due to the high demands of mathematics needed
the experimental difficulties to demonstrate the regula
ties of different vibrating modes.

Both these limiting factors have vanished. The power
modern computers allows to demonstrate all kinds of re
ularly or irregularly shaped membranes in their differen
vibrating modes in an effortless way. The question ther
fore has to be posed if this topic has some general dida
cal value and relevance.

We see two aspects: 1. With the support of mode
computers the behaviour of extended elastic objects c
easily be integrated in the physics curriculum. Nowada
extended objects are most of the time treated as rig
which implies certain problems [5]. The model of the rigi
body is an artificial one, neglecting internal processes a
relying on non-causal distributions of forces. The trea
ment of extended bodies in physics could therefore
enriched if such objects would not only be presented
rigid but also as elastic - their real and only nature.

2. The whole is more than the sum of its parts. Th
basic statement can be visualised in a rather convinc
and surprising way by applying our method, describe
above. When exciting for instance a single point in the ce
tre of the rectangular membrane (fig 1 below) with an arb
trary frequency, some irregular vibrations of the comple
membrane are displayed and regular pattern, if at all vi
ble, show up only for short moments in time. But if the fre
quency is one of the eigenvalues of the membrane, the t
vibrations around the excited particle at the centre slow
but irresistibly transform to a vibrating mode which con
trols every single particle of the membrane in a coord
nated way. Such a mode is a property of the complete s
tem. It cannot be derived from properties of its parts and
is more than the sum of all these individual properties.

We dare to mention that our swinging membranes a
not only correctly represented but are nice and attractive
look at. This fact cannot be a substitute for learning phy
ics, but it will never harm and may be more important fo
motivation than often acknowledged.

Besides these general aspects a more specific po
deserves to be mentioned: the good agreement betwee
simulated membrane, modelled as a system of discr
parts and the theory, based on a continuous distribution
matter. This aspect is discussed in the following paragrap

Explanation of the difference between theory and sim-
ulation

Results from theory and our simulation differ due to
number of factors.
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First, the measurement of the resonance frequency c
ries an experimental error due to the method used. Re
nance is detected by observing the shape of the space
tribution of the vibrating elastic plane, and although th
shape and the associated amplitude are very sensitive
frequency variations, we estimate an error in this measu
ment of the order of 1%.

Second, our model is a discrete one while the theory
based on a continuous mass distribution. Since at vibrat
modes of higher order the spatial distribution of mass va
ies more strongly, the difference between the “continuou
theory and the discrete model should increase with mod
of higher order. For a linear string, modelled by elastical
connected mass points with the same spatial distribution
our plane, we computed this expected tendency with
maximum deviation of 1% for the 3rd. order mode (for
string made up of 21 particles).

A third reason for the difference between theory an
experiment can be found in the fact that the theory does n
take into account the variation of tension in time withi
any swinging plane. Such an idealization is valid only fo
rather small amplitudes. The theory also does not take in
account the fact that for larger amplitudes the displac
ments do not only occur perpendicularly but also to a sm
degree in parallel to the plane. Since we need larger am
tudes to measure the resonance frequency, it cannot
expected that our simulated model results in the same v
ues as those derived from the idealized theory.

Finally, the membranes we used in our simulation wi
circular planes did not have a precisely circular shape. T
also may explain some of the difference between theo
and experiment.

Basic laws and numerical solutions as added value
Traditional methods for teaching topics like "oscilla

tions and waves" are characterized by doing experime
and then solving the corresponding differential equation
Experiments should be carried out whenever possible, a
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a thorough theoretical treatment is necessary. Depth a
direction of this theoretical treatment, however, are open
discussion.

Besides looking only for closed form solutions of wav
equations in 2 dimensions (Bessel functions in cylindric
coordinates), a more direct and much simpler path is no
opened by starting from Newton’s basic principles an
Hooke’s law and by looking for the corresponding nume
ical solutions, visualized on a computer screen.

Furthermore, this approach allows for a broad spectru
of exploratory actions. Direct feedback is received whe
changing the shape of the plane or internal parameters s
as mass distribution and tension. This offers the possibil
of building up an intuitive knowledge base about th
behaviour of membranes as a starting point for the math
matical treatment.

We therefore see this approach not as an alternative
as an enrichment to the traditional method. The relati
between cause, condition and effect is shown in a mo
direct manner and is offered for experimental exploratio
Furthermore the comparison between our numerical so
tions and the closed form solutions offers the opportuni
to develop methodological knowledge of higher order.
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