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1. Introduction

1.1. Contents
The following learning material is an advancement from a former package, which was 
based on the simulation program xyZET. This program allowed in a three-dimensional rep-
resentation to animate particles under the influence of various forces (elastic, electric, mag-
netic, gravitational, contact). 
The program xyZET was written in C under UNIX and therefore needed an x-server to run 
under Windows. To avoid this obstacle for wider distribution and to become platform inde-
pendent a reduced version of xyZET has been re-written in Java. and is called JavaXYZ 
(Programmer: Sasa Divjak). JavaXYZ has the form of a workbench and offers the possibil-
ity to develop simulations of a broad variety without any knowledge in programming. Only 
mouse controls and a knowledge about the interface are necessary. 
In addition to the prepared simulations and corresponding text a series of computer animat-
ed videos have been developed to reduce the gap between a real experiment and the corre-
sponding simulation. 
From the traditional curriculum those topics were selected where interactive simulations 
can play a supportive role for motivation and understanding. For more theoretical topics 
the students have to refer to the corresponding textbooks.
List of selected topics
Velocity and Acceleration, Force, Falling Objects, Collision, Circulating Objects, Oscillat-
ing motion.

1.2. Treatment of Mathematical Aspects for Teaching Physics
The material presented here is based on an alternative approach in comparison to tradition-
al teaching. A main aspect of this new approach is the attempt to avoid relying on mathe-
matical knowledge as a prerequisite for understanding physical concepts. Instead, interac-
tive simulations in combination with animated computer graphics are used to promote the 
integration of mathematics and physics.

Following this principle, mathematical equations are not derived from theory when intro-
duced but directly presented. By comparing these mathematical expressions with the re-
sults presented by the simulation the students shall get acquainted with these results. 

1.3. Integration of Simulation and Experiment
When using the materials presented here, it is taken for granted that real experiments are 
demonstrated and carried out in class whenever feasible. It is a rather trivial fact that a 
simulation cannot prove anything but needs the proof and support of the real experiment. 
The teacher has to point out this fact to ensure that students do not stick to any naive and 
non-reflected opinions about the value and significance of simulations compared to actual 
experiments. 

1.4. Measurements and Units
When measurement are taken while real experiment are performed, it is vitally necessary 
to note the actual value as well as the used units. 

When using a simulation with output in numerical form, the choice of the units is general-
ly free. For the program JavaXYZ for instance, the defined unit for distance corresponds to 
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something like 1/10 mm, depending on the available solution of the monitor. This unit can 
represent any distance in real life. The same is true for other numerical values of time, 
mass, charge etc. 

Before using such numerical values presented by a simulation, an agreement has to be 
found concerning the units to be used. It is advised that the user chooses the common ba-
sic units like m, sec, kg, and the derived units like N or m/s, in compliance with the sys-
tem of units used by the scientific community. 

1.5. Media
Videos
The inserted Videos are either pure computer animations or a combination of real experi-
ments and computer animations. 
Authors: Jan Paul, Dug Van Dang
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2. Simulation Tool Java-xyZET

2.1. General Information
For the support of the following course material a simulation program is available, which 
allows a 3d-presentation of all simulations and this inside of a cube, which can be rotated 
and presented from all perspectives.

t

 Fig 2.1.:  Main simulation window with control buttons
This program can be downloaded at  
http://www.astrophysik.uni-kiel.de/~hhaertel/index_e.htm.

2.2. User Interface
The cube and its content can be rotated by clicking with the left mouse button down with-
in the cube and moving the mouse.
If in addition the shift button is down, the cube can be moved. With the ctrl-button down 
the cube can be zoomed in and out.

The buttons  allow to start or stop the simulation. To advance the simulation by 

single step the step button  has to be activated. 

The slider of t allows to change the speed, with which the simulation is displayed.

Activating the save button  will keep a copy of the actual state of the simulation in 
memory, which can be recalled to the screen at any time by activating the recall button 

.

2.3. Right-angled Coordinate System 
Sequence of the axes
Within the cube of Java-XYZ a right-angled coordinate system is used to define positions 
and directions. 
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By convention the sequence of the axes for such a right-angled coordinate system has been 
determined by the so-called "right-hand-rule". The thumb points in the direction of x, the 
forefinger points in the direction of y, and the middle finger in the direction of z.

t

x

y

z

x
y

z

x

z

y

 Fig 2.2.:  xyz-axis under different perspectives
As long as this sequence is respected, any orientation in space is equivalent as demonstrat-
ed with the three possibilities to the right.
As default view within Java-xyz the position shown above has been selected. In this de-
fault position the positive x-orientation points to the right, the positive y-orientation points 
to the back, and the positive z-orientation points upwards.

2.4. Coordinates in Space
Units of length
The length of the three axes x, y, and z from the origin to the walls of the JavaXYZ cube is 
divided in 1000 units. The length of each edge of the cube is therefore equal to 2000 units
The actual length of this unit on the screen corresponds to about 0.1 mm. However, since 
you are dealing with a simulation there is no reason, not to think of such a unit as repre-
senting a larger length, for instance 1mm. In this case the JavaXYZ cube would represent a 
cubic volume with an edge length of 2m.
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Positions

x=0

x=0
y=0
z=1000

x=1000
y=0
z=0

x=0
y=1000
z=0

y=0
z=-1000

x=-1000
y=0
z=0

Based on a system of rectangular coordinate 
axes, each position in space can be identi-
fied by three numbers, called coordinates. To 
do so, it is necessary to define the positive 
orientations of x, y and z by following the 
right-hand-rule described above.
A specific position within this cube is de-
scribed by three numbers, the x-, y- and z-
coordinates in this sequence. 
Example: P(1000, -1000, 1000) indicates the 
upper right corner of the front side of the 
cube. To get used to this structure and its 
different coordinates it may be useful invest 
some time for exercising. 

 Fig 2.3.:  XYZ-Cube with axis and coordinates
Below you find a list of positions for particles within the XYZ-cube. In may be useful to 
determine in thought where these particles should be located before they are placed? 
P (1000, 0, 0);   P (1000; 1000; 1000); P (-1000; 0; 0); P (-500; -500; -500); 
P (+500; +500; +500) 
To place a particle at a wanted position there are two possibilities: You can either use the 
„Particle Management“ window (at A in fig.2.4) where you can place a particle at a prede-
fined location (at B and C). 

C

B
A

D

 Fig 2.4.:  To set a particle, the Particle Management window has to be selected (A)
The type of the particle can be selected at B. Its position can be determined 

either by entering numbers at C or by activating the green arrows (D). 
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The second possibility is to open the "Particles Inspector" window of a particle (which 
should have been placed before) by selected the particle with the right mouse button (see 
fig.2.5) and then the „Edit Particle“ submenu. The "Particles Inspector“ window offers the 
possibility to enter or change the coordinates numerically. When doing so each individual 
input has to be finished by hitting the “enter“ key

 Fig 2.5.:  XYZ-cube with the Particle Inspector window where the position 
of the particle can be entered numerically (A)
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3. Velocity and Acceleration 

3.1. How to Add and Subtract Velocities
Some terms in physics like velocities, forces, a.o. have two distinct properties: an amount 
and a direction. Such terms are called vectors.
If a velocity is bound to a specific direction, it can have 2 orientations, either to the left or 
to the right, up or down, north or south a.o.
In physics and mathematics such two opposite orientations are by convention symbolised 
as positive (+) and negative (-). These symbols - even though they look alike - are not 
identical with the mathematical operations addition (+) and subtraction (-). 
If velocities with positive or negative orientations have to be added or subtracted the fol-
lowing rules apply:
To add a velocity with negative orientation + (-)v is the same as to subtract velocity with 
positive orientation. In mathematical symbols: + (-)v = - (+)v

 To subtract a velocity with negative orien-
tation - (-)v is the same as to add the same 
velocity with positive orientation. In math-
ematical symbols: - (-)v = + (+)v
The rules to be applied are the same as 
adding or subtracting positive or negative 
numbers.
If a velocity is symbolised as (+)v, it 
should be called positively oriented veloci-
ty while the short form "positive velocity" 
can lead to confusion among newcomers to 
the field. There is no positive or negative 
velocity, there are only positively or nega-
tively oriented velocities and this only rel-
ative to a specific direction in space. 
What has to be done to increase the speed 
of both particles in simulation 3_velocity".

 Fig 3.1.:  Simulation "3_velocity"
The following picture illustrates, how to detect or change the velocity (its amount) of a se-
lected particle. 
This can be done by entering the numerical values for the three components vx, vy and vz
in the "Particle Inspector" window at A 
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A

B

 

 Fig 3.2.:  How to change the velocity and how to activate the visualization of vectors
The velocity of a particle can be visualised as arrow - the symbol for a vector. This func-
tionality can be initiated in the "Particle Inspector" window at B (fig. 3.2.).
The visulisation of v common for all particles within the XYZ-cube can be set in the "Parti-
cle Management" window at C (fig. 3.3.).

C

E

 

 Fig 3.3.:  How to activate the visualization of vectors common for all particles
The scale of the visualized vectors (for acceler-
ation, force and velocity) can be set in the 
"Global Paramenter" window at D. 

 Fig 3.4.:  How to scale arrows,  
the symbol for vector quantities
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The last two windows are called from the main menu line of the Java-XYZ window at E 
(Fig 3.3.at E)

3.2. Velocity in 3 Dimensions
A velocity with an arbitrary direction in space can be decomposed in so-called x-, y- and 
z-components, directed along the 3 axis of a system of rectangular coordinates.
These components can have 2 orientations along each axis, labelled either as positive or 
negative.
As an exercise to get familiar with coordinates within the Java-XYZ cube as well as with 
velocity components, the following 4 similar exercises are proposed where each time the 
velocity components of the particle in the middle should be set in such a way, that it will 
collide head-on with the particle in the back. For changing the velocity components of a 
particle see fig. 3.1.

 Fig 3.5.:  Assignments to exercise with coordinates and v-components in 3 D
A reminder: 
The cube can be rotated when moving the moues with the left mouse button down.

You may either set the 2 particles at the 
given positions yourself or you can load the 
prepared simulations named:
3_assignement1 till _assignement4. 
Prepared assignments or simulations can be 
loaded under the menue "Experiment" in 
the main menue line of the XYZ-cube (see 
fig. 3.6 at A).

 Fig 3.6.:  How to load a prepared simulation

3.3. Velocity and System of Reference
Rest and Motion
For our daily life the two states “being at rest” and “being in motion” are clearly distinct 
This idea has first been questioned by Galileo and Newton in the 17th. century. 
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There is no place in the whole cosmos which could be claimed to be at rest. We are placed 
on a rotating earth, we are circulating around the sun, we are moving with the sun across 
our galaxy, etc. 
What we so distinctly perceive as being at rest, is therefore only relative, only apparent. 
To define a place to be at rest or to move with a specific velocity, a system of reference is 
indispensable. 
The importance of such a system of reference becomes quite obvious if the movement of a 
planet, for instance Mars, has to be described. 
Movement of Planet Mars from Geocentric versus Heliocentric Perspective
To understand the retrogradation of our planets, the geocentric and the heliocentric perspec-
tive have to be unified in thought. To support this mental task, a video is prepared (http://
www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/mars_en.htm) which shows pictures from 
these two perspectives with smooth transitions.

Retrograde Motion
of the Planet Mars
from changing perspectives

Concept
Hermann Härtel

Computergraphics
Duc Van Dang

 

 Fig 3.7.:  Video about the movement of Mars
To simplify the explanation, it may be useful to rectify the circular movement of Earth and 
Mars in the following way.

A

B

C

DSimplification

A

B

C

Earth

Mars

 Fig 3.8.:  Explanation about the retrograding movement of Mars
The circular path of Earth is simplified to the track A-B-C, while the path of Mars is sim-
plified to a straight line D. 
While on track A, it is obvious that Mars seems to move to the left. 
Since the velocity of Earth on track B is faster than the velocity of Mars, it seems that Mars 
is moving to the right. On track C as on track A it looks again as if Mars is moving to the 
left. 
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3.4. Acceleration
In daily life the meaning of "acceleration" is limited to an object moving with increasing 
speed. The meaning of this term in physics, however, is more general.
When ever the velocity of a moving object is changing, either increasing or decreasing its 
speed or changing its direction, the corresponding movement in physics is called to be ac-
celerated.
If the velocity of an object is changing from v1 to v2, during a certain time period t, in 
physics the corresponding movement is called to be accelerated. 

The acceleration of a moving object is larger, 
if the difference v2 - v1 is larger for the same 
time interval: In mathematical terms this im-
plies: a v2 v1–  

The acceleration is smaller, if the time inter-
val t = t2 - t1 is larger to reach the same dif-
ference in velocity: In mathematical terms this 
implies: a 1 t2 t1–   

This leads to the mathematical definition of ac-

celeration as: a
v2 v1–
t2 t1–
----------------- v

t
-------= =  

 Fig 3.9.:  Simulation "3-acceleration1
The particles in the simulation "3_acceleration-1" move with different acceleration (for 
loading a prepared simulation see fig.3.6). This can be checked by stopping the simulation 
in the middle and checking the velocity component vx inside the "Particle Inspector" (fig. 
3.2)
Acceleration as Vector
The physics term acceleration has vector properties. This means that it has a direction in 
space and that it can be decomposed along the axis x, y, and z parallel to the axis of a rec-
tangular coordinate system.
For a given direction the acceleration as vector can have 2 orientations, indicated as posi-
tive and negative.
These indications are often identified with acceleration and deceleration.
However, this not correct in the world of physics. A particle which moves with a negative-
ly oriented acceleration does not mean, that the velocity of the particle is decreasing. It 
may well increase.
The prepared simulation "3_acceleration2" may help to clarify this issue.
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  The blue arrow indicates the actual acceler-
ation. The velocity is permanently changing 
but the acceleration is always constant and 
has a positive orientation (parallel to the 
positive direction of the x-axis). 
The acceleration in this simulation is caused 
by simulating a charged particle and an elec-
tric field in +x-direction, causing a force in 
+x-direction. 

 Fig 3.10.:  Simulation "acceleration2" 
Movement with constant acceleration  
but permanently changing velocity
The orientation and amount of the acceleration can be changed inside the "Particle Inspec-
tor" window by changing the amount of the charge (A) or the polarization (plus instead of 
minus) of the charged particle. 

A

 

 Fig 3.11.:  How to change charge and polarity of a selected particle
A further possibility to change the amount of the acceleration (the applied force) is given 
by changing the strength of the simulated electric field (see fig. 3.12)
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.

A

 Fig 3.12.:  How to set or change the strength of the electric field (at B) inside the "Glob-
al Parameters" window, called at A in the Window sub-menu 

(main menu line of Java-XYZ)
Remark: 
The acceleration during the collision with the walls of the cube are not shown.
Result
The orientation of the acceleration - either positively or negatively oriented - has nothing 
to do with increasing or decreasing speed. With both orientations the object can move fast-
er or slow down. 
Important is in what sense the velocity is changing. If the velocity changes to more posi-
tive values or towards the positive orientation, the acceleration has a positive orientation 
and vice versa In mathematical terms this rule can be expressed as:
acceleration with positive orientation: (v2 - v1 > 0), 
acceleration with negative orientation: (v2 - v1 < 0)
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4. Concept of Force

4.1. General Properties
In physics the concept of force is used since Newton to understand and describe mechani-
cal processes. 
A so-called Newtonian force as it is understood in physics has the following properties:
• A force is the cause of change, either of the movement of an object or of its form or 

volume.
• A force is always the result of an interaction between at least two objects. This implies 

that a force can never exist on its own, it always appears in pairs. These two paired forc-
es have always the same strength and direction but opposite orientation.

• A force has a unique direction with two possible orientations, usually indicated as posi-
tive or negative.

• A force has a point of attack or point of application. 

4.2. Force as Vector
Every force as a term in physics has two 
different properties: an amount and a di-
rection.
A term with these two properties is 
called a "vector".
Such a vector is represented and visual-
ized as arrow

4.3. Force and Acceleration
The prepared simulation "4-force" demon-
strates the effect of a force on the movement of 
a particle.
As in the previous simulation the force is simu-
lated by setting the charge of the particle to a 
positive value (in the Particle Inspector win-
dow) and giving the strength of an electric field 
(in the positive direction of the x-axis) a posi-
tive value (in the Global Parameters window).
The arrows indicate the directions and amounts 
of the applied force f (white) and the resulting 
acceleration a (blue). The latter two values are 
indicated numerically in the "Particle Inspec-
tor" window.

 Fig.4.1.:  Simulation "4-force";  
Movement with constant acceleration
By changing the mass of the particle (in the "Particle Inspector" window) the simulation 
shows that the acceleration a and the mass m are inverse proportional. If you double the 
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mass, the acceleration is divided in halve and vice versa. This relation is valid in general 
and should be intuitively clear: the more mass an object has, the slower can it be set in mo-
tion, assuming a constant force. Such an inverse relation implies, that the product of mass 
and acceleration is constant. 
More to this relation will be found in the next chapter. 

4.4. Newtonian Force, Inertia and Mach´s Principle
Newton‘s 2nd Law
In the former chapter it has been stated, that under the influence of a constant force the 
product of mass m and acceleration a of a moving object is constant. 
This relation - the inverse proportionality of m and a - has been tested experimentally and 
has been found to be valid under all circumstances, at least unless not very high velocities 
(comparable with the speed of light) get involved. 
This product - m x a - has been taken as definition and as a measure for the strength of a 
force which leads to the famous equation, set up in the 17. century by Isaac Newton:
F = m x a
• m = mass
• a = acceleration 

m

In practical all physics textbooks, a situation according to this 
equation is visualized by a single vector F applied to an object 
with a mass m.

Inertia
From experience in daily life we know that an object resists, if we try to make it move fast-
er or if we want to reduce its speed. 
In traditional physics this resistance is called inertia and is seen as a property of matter. 
And as a property of matter, it cannot be a Newtonian force. An important and indispensa-
ble character of a Newtonian force is that is has to occur as interaction between two ob-
jects. It cannot be the property of a single object. Furthermore inertia can never accelerate 
an objects. It can only react on acceleration. 
And since such an interactive partner is missing, the resistance of a material object against 
any kind of acceleration is not seen as a force and is not visualized as such in traditional 
textbooks.
Mach´s Principle
There is an exception, which dates back to the beginning of the 20 century. At that time, 
the German physicist Mach proclaimed some principles about general relativity and pub-
lished the idea that the presence of the matter of all the galaxies in the universe is responsi-
ble for the inertial mass of objects here on earth.
The broad notion is that "mass there influences inertia here".
Until today this idea has never been experimentally approved or disproved and therefore re-
mains speculative. However it opens the possibility to think of a possible interactive part-
ner for inertia and facilitates to accept the resistance of a material object against accelera-
tion as a real force.
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In the following learning material the possibility is offered to accept this idea of inertia as 
a real force and to visualized it, when ever wanted, as follows.

Newtonian
Force

Force 
of inertia m

 Fig.4.2:  Visualization of a Newtonian force and the equal 
and oppositely oriented force of inertia as an acceleration-reaction-force

By doing so it has to be kept in mind that a force of inertia, even though it is real, is not a 
Newtonian force, which can be applied to accelerate an object. The force of inertia is an 
acceleration-reaction force, which only exists during the process of acceleration. It cannot 
be applied to an object to cause acceleration. But if a Newtonian force is applied to an ob-
ject this force of inertia makes acceleration possible by producing the necessary resistance. 
Without it the Newtonian force would act against something without resistance, it would 
pull or push against nothing or emptiness. It seems reasonable to claim that this could have 
no effect.
The following simulations demonstrates different kinds of accelerated movements and al-
lows the user to visualize independently the Newtonian as well as the forces of inertia.

4.5. Force of Inertia
With the idea of inertia as an acceleration-reaction force the dynamic situation, where an 
object is accelerated by a Newtonian force can be described as an equilibrium between two 
forces, a Newtonian force and a force of inertia - an acceleration-reaction force.
Both forces can be visualized independently as vectors.

 Fig.4.3:  Simulation "4-force-inertia". How to visualize a Newtonian and 
an inertial force (an acceleration-reaction force) common for all particle to be set
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The "Particle Inspector" window offers the possibility to visualize these forces for an indi-
vidual particle.

 Fig.4.4:  How to visualize a Newtonian and an inertial force 
(an acceleration-reaction force) for a selected particle

As already mentioned above an accelerated movement can be described as if there exists al-
ways an equilibrium between an applied Newtonian force and a force of inertia as accelera-
tion-reaction force. This description of a movement is valid for all objects independent a of 
their mass.
The accordance of the simulation with this last statement can be checked by changing ei-
ther the mass of the particle or its charge (in the "Particle Inspector" window).
Mathematical description
With the idea of inertia as an acceleration-reaction force, the movement of an object being 
accelerated by an applied Newtonian force can be interpreted as an equilibrium and repre-
sented in mathematical form as:
FNewton = - FInertia

Since we have FNewton = m a (Newton´s Principles, law II)
it follows:
FInertia = - m a;
The equation FNewton = - FInertia is an expression for equilibrium and should not be identi-
fied with a static or stationary situation where two Newtonian forces are applied to the 
same object. In such a case, the sum of all applied Newtonian forces is zero and the object 
will remain in its state of rest, or uniform motion in a straight line (Newton´s Principles, 
law I).
An equilibrium between a Newtonian and an acceleration-reaction-force, a force due to in-
ertia, does only exist during the process of acceleration.
With the idea of inertia as an acceleration-reaction force, the rule to be learned is rather 
simple:
There exists always an equilibrium between two forces, either in a static or stationary situa-
tion between two Newtonian forces or during acceleration between a Newtonian force and a 
force of inertia.
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4.6. Elastic Interaction and Force of Inertia
The simulation "4-force-spring" shows the move-
ment of two objects connected by an elastic spring. 
Again it is possible to visualize the equilibrium be-
tween the Newtonian forces, exerted by the spring 
and the inertial forces as acceleration-reaction force.
A compressed spring is indicated as a red line, an 
extended spring as a blue line. A neutral spring is 
indicated as white line.
The simulation shows in accordance with reality 
that in every moment the inertial force Finert is of 
equal strength as the Newtonian force FN, applied 
by the spring. Both forces act in the same direction 
but with opposite orientation. FN = - Finert

 Fig.4.5.:  Simulation 4-force-spring
A compressed spring is indicated as a red an extended Spring as a blue and a neutral 
spring as w white line. 

A spring can be set between two particles by 1. keeping 
the shift-key down and 2. by selecting one particle with 
the left mouse button down and release the button on top 
of the other particle. If this procedure is repeated over an 
existing spring, the "Spring Editor" window opens, where 
spring parameters can be set. 

 Fig.4.6.:  Spring Editor window
Since the visualization of the force of inertia can be suppressed, it is always possible to ex-
plain Newton´s law with inertia as a property of mass in the traditional way.
The simulation above can be used to find out, what will happen if the mass of both parti-
cle will be changed. The mass of a particle can be changed inside the "Particle Inspector" 
window. An explanation for the demonstrated effect is given in the next chapter.

4.7. Elastic Interaction - Hook´s Law
A spring at rest without any applied force has a certain length l0.
When equal forces are applied at both ends the spring will either extend or shorten and 
change its length to l.
Due to this change of length the spring will react with a force of elastic origin Felastic which 
is (within limits) proportional to 2 terms:
• the difference between l and l0.
• a spring constant D which is specific for every spring and indicates how stiff or soft a 

spring is. The larger D the stiffer the spring.
These relations are represented in mathematical form as:
Felastic = s D        (l - l0 = s). 
This law is called "Hook´s law“.
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During the process of acceleration the length s and therefore also the force F are not con-
stant but are changing in time.
The direction of the force is such that both particles will always be accelerated towards the 
position of rest, when the spring is without tension.
The larger the mass m of the particles the smaller is the acceleration due to the force of the 
spring (not depending on the mass of the particles).
As a result of an increased mass of the oscillating objects the oscillation will need more 
time for one cycle.

4.8. Force and Constant Velocity
If an object moves with constant velocity many people believe that it needs a constant driv-
ing force to keep the velocity constant. If for instance car drivers want to increase the speed 
of their car they have to increase the driving force of the motor by stepping on the gas ped-
al or have to lift their foot to slow down.
So the conclusion is: To keep up a movement with constant velocity, it needs a constant 
driving force.
This conclusion implies: If there is no driving force, the object will come to rest.
From a physics perspective these conclusions are problematic, because they are in contra-
diction to one a the basic laws in Mechanics - Newton´s 2nd principle - stating that a con-
stant force will cause a constant acceleration, a linearly increasing or decreasing velocity, 
depending on the orientation of the force
A series of videos have been developed which shows scenes from daily life, where objects 
are shown, moving with constant speed. 
Vehicle on a country road      http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/vehicle.htm

Gliding aeroplane http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/air_plane.htm

Ship in calm water   http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/ship.htm

Motor boat on a river   http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/boat.htm

Skydiver on an open parachute   http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/skydiver.htm

A balloon floating in the wind   http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/balloon.htm

Bubbles raising in a liquid   http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/bubbles.htm

Slider on an air-cushion track  http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/air_cushion.htm

The message of each of these videos is the same: If the sum of all applied forces cancel 
each other, so that the sum of all forces is zero, the object will move with constant speed. 
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5. Fall and Throw - Law of Gravitation

5.1. Weight - Weightlessness
In the middle of the 17. century Newton formulated the universal law of gravity, stating 
that all material objects are interacting in the form of mutual attraction (see glossary be-
low).

Due to the gravitational interaction with the total mass of 
the earth, every material object has weight. But what about 
weightless conditions?
Does the child in the figure has weight or is it without 
weight? Only in this very moment or during the complete 
"throw"?
These questions and others related to movements under the 
influence of gravity will be answered on the following 
pages

 Fig 5.1.:  Is this child weightless?

5.2. Law of Gravity
Qualitative Description
The phenomenon of gravitation means that all material objects attract each other. Because 
of this fact all objects are attracted by the earth and have therefore weight. This seems to 
be a rather normal fact, however, until today the physicists have not found any explana-
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tion for it. It must be accepted as a basic phenomenon which cannot be explained or re-
duced to a more basic principle.
The attracting force between two material objects 1 and 2 is proportional to a specific prop-
erty of these objects, which me call here tentatively grav-property.
It has been shown experimentally that under all circumstance this grav-property is propor-
tional to the former introduced term "mass". This fact is at first sight rather astonishing, be-
cause there is no obvious relation between the property of an object to resist acceleration - 
its inertial mass - and the property to attract another material object. 
Einstein has developed an explanation in his General Theory of Relativity, which involves 
curved spaces and which can only be understood by specialists. There are other more spec-
ulative explanation, where inertia is reduced to a special gravitational effect, involving the 
galaxies of the 
whole cosmos. 
In any case it is now generally accepted that the strict proportionality of inertial mass and 
the above introduced grav-property indicates, that both have a common origin. Therefore 
both properties are nowadays called "mass". To distinguish between these two properties, 
they are often called "inertial mass" ms and "gravitational mass" mg.

Quantitative Description
A universal law can be stated: all material objects attract each other.
The attracting force between two material objects 1 and 2 is proportional to m1 and propor-
tional to m2. The attracting force also depends on the distance r between the attracting ob-
jects. Its magnitude is inversely proportional to the square of the distance between the cen-
tres of the two bodies.

Quantitatively, the gravitational law can be written as: F1 2 F– 2 1 
m1 m2

r2
-------------------= =

The constant  is a universal constant of nature. 

5.3. Objects in Free Fall
All objects - when starting from rest - fall to the ground with the same, constantly increas-
ing velocity, inde pendent of their weight (if air resistance is neglected). The video „Free 
Fall” (fig.5.2)shows an experiment where three different balls of quite different weight are 
dropped from a height of about 4m.

20g

300g 1500g

 Fig 5.2.:  Video about an experiment where 3 objects of different weight drop down 
(http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/free_fall.htm)
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For many people this may not be an astonishing fact because they take this as a law of na-
ture. There are, however, many people who are convinced that smaller and lighter objects 
are dropping slower than larger and heavier ones. There is an astonishing point here. 
A smaller object is pulled downwards by the earth with a smaller force than a larger ob-
ject made from the same material. Why will nevertheless both objects fall along equal dis-
tances in equal length of time? 

The answer is found in the fact that the object 
with a smaller gravitational mass has also a 
smaller inertial mass. Therefore its resistance 
against acceleration is less. And since gravita-
tional mass and inertial mass are strictly propor-
tional, these two effects - less attracting force 
and less inertia - cancel for every object and 
every amount of mass.
The prepared simulation "5-free-fall" demon-
strates that the program JavaXYZ is in agree-
ment with reality. This is of course not astonish-
ing. Astonishing is the fact that inertial mass 
and gravitational mass are proportional 

 Fig 5.3.:  Simulation "5-free-fall"

5.4. Drop Distance and Drop Time
All objects experience the same acceleration when dropping down to earth. This implies 
that a general relation exists to determine the drop distance from a given drop time which 
is valid for all objects, independent of their weight. 
For the simple case that an objects is released from rest this relation reads:
s = 1/2 g t2; s = drop distance; g = acceleration due to gravity; t = drop time

The simulation "5-free-fall-2" explains, how this 
relation can be derived.
In this simulation an electric field is applied in 
negative z-direction (downwards) but no gravita-
tional field exists. Since the right particle is 
charged, it moves under a constant force and 
therefore with a constant acceleration ac. The left 
neutral particle moves due to its starting velocity 
with constant speed vc. 
Question: What constant velocity vc is necessary 
for the body on the left so that both reach the bot-
tom of the cube at the same moment in time?

 Fig 5.4.:  Comparison of 2 objects moving with 
constant speed and constant acceleration  
Simulation "5-free-fall-2"
The starting velocity of the left particle can be changed in the "Particle Inspector" window 
(fig 3.1).
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Result:
The velocity of the accelerated body increases from zero to a maximum value vmax when it 
hits the bottom of the cube.
To cover the same distance smax during the same time the body on the left must move with 
a constant velocity v = vmax/2. With this starting velocity it is too fast at the beginning and 
too slow at the end. Since the velocity of the accelerated body does increase linearly from 
zero up to vmax, this "too slow" and "too fast" will balance and both objects will reach the 
bottom at the same moment in time
The body on the left, moving with constant velocity covers during the time period tmax the 

distance: smax
vmax

2
------------ tmax= .

For a constant acceleration we get for the velocity as function of time vmax = g tmax. 

For the distance smax we get: smax
g
2
--- tmax

2=

This relation is valid for arbitrary distances and time spans as long as the object starts from 
rest. Therefore the index can be removed and we get as relation between distance to fall 

and time to fall: s 1
2
---g t2=

The simulation "5-free fall" with the parameters: smax = 2000 units; g = 10 units shows an 
agreement between the mathematical relation given above (with v = vmax/2)

5.5. Free of Weight and Free of Force - An Important Difference
When looking at astronauts as they are floating in their space craft while circulating around 
the earth, it is obvious that they are weightless. But are they also free of force? Certainly 
not, because these space crafts move within the gravitational field of the earth. For usual 
orbits the strength of this field is nearly the same as here on earth.
The same is valid for an object in free fall. It certainly is weightless, otherwise scientists 
would not have build a so-called drop tower at University Bremen, Germany, where low-
cost experiments under conditions of weightlessness are carried out.
Look at the video and try to find the answer to the question posed about a throw upwards.

 Fig 5.5.:  Video about the drop-tower at Bremen 
http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/fallturm_en.htm
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Answer
An object has weight when it is in equilibrium between two forces, gravity pulling down-
ward and a counter force, applied by the ground, pushing upward.
A scale indicates as weight either this force downward or this counter force which is nec-
essary to keep up the equilibrium.
Due to these two forces, oriented downward and upward, an object will be more or less de-
formed depending on its elasticity. This elastic deformation disappears when there is no 
counter force from the ground but when only the gravitational force oriented downward is 
applied.
Gravity applies to every single atom or molecule of any object in the same manner and 
therefore does not created any tension or elastic deformation. It is this non-deformed state 
which is interesting for scientist. Therefore such experiments under weightless conditions 
are carried out, either in a drop tower or in space crafts like the ISS. 
Why objects in space crafts are weightless will be explained in later chapters. 

5.6. Vertical Throw 
Starting Velocity and Time to Rise
The prepared simulation "5-vertical-throw" allows to find out which starting velocity up-
ward is necessary for the ball to move against gravity and to reach the top of the cube 
without bouncing against it. Simulated is a constant gravitational field downwards.
Such a gravitational field can be activated in the Global Parameter window. 

 Fig 5.6.:  Simulation "5-vertical-throw" 
How to set and change an external gravitational field in z-direction

A vertical throw and a vertical fall are symmetric movements with constant acceleration. 
Therefore the same equations have to be applied.

s = 1/2 g t2; v = g t + v0

In the simulation the value for the acceleration is g = -10 units.
Is there an agreement between the results of the simulation and these equations?
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5.7. Horizontal Throw
The Experiment and a Question
The video (http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/ho_throw.htm) shows 
an experiment, where a ball is pushed horizontally from a height of about 4 m and hits a 
basket full of water at a distance of about 6 m. 

 Fig 5.7.:  Video about a horizontal throw
Question:
If a second ball would start to fall vertically at the same moment in time when the ball is 
pushed horizontally, would it reach the floor before or later or at the same moment in time?
A first answer can be found by using the prepared simulation "5-horizontal-throw" (next 
chapter).
Simulation - Principle of Superposition
It would not be a simple task to set up a real experiment where the two balls are released at 
the same moment in time with variable or no horizontal velocity components. To develop a 
corresponding simulation is rather simple and is sufficient, because of a basic principle - 
the so-called superposition principle. This principle is based on the fact that a force has ab-
solutely no influence in a direction perpendicular to its own direction.

In our case this means that gravity cannot change 
the horizontal velocity component in any way. This 
component of the velocity remains constant - it 
will at least not be influenced by gravity - while 
the acceleration downward will be the same as for 
all free falling objects. The two balls will there-
fore - as demonstrated by the simulation - always 
hit the ground at the same moment in time. This 
will happen in any real experiment with an accu-
rate experimental setup.
You may find out by trial and error, that a specific 
velocity v0 is the right one to hit the ball on the 
left. 

 Fig 5.8.:  Simulation 5-horizontal-throw 
(with a simulated gravitational field downwards)
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The simulation indicates in accordance with reality that the movement of the horizontal 
throw is an independent superposition of a horizontal component with constant velocity 
and a vertical component with constant acceleration.
An alternative to trial and error is an approach based on theory as shown below.
Numerical Solution
In the video the question was posed; What starting velocity is needed for the ball to hit the 
basked (distance 8m) from a height of 5m?
To answer this question, the following relations are needed and have to be understood:
• For a movement with constant acceleration: s = 1/2 g t2; v = a t; (if started at rest). 

(s = distance travelled; v = velocity; g = acceleration; t = time span)
• For a movement with constant velocity: s = v t.
From the principle of superposition it follows that the movement shown in the video and 
by the simulation can be separated in two parts, a free fall with constant acceleration a = g 
and a horizontal movement with constant velocity v. 

For the free fall in perpendicular direction we have: 

s2, 

s1, t1

8 m

5 m

v1
s1

g
2
---t1

2= t1
2s1
g

--------=

s1 4m g; 10m s2 t; 0 8s= = =

For the horizontal movement we have: 

v2
s2
t1
----- 6

0 8
-------------m

s
----= =  

The values for the simulation are:  
s1 = 1800 units; s2 = 1800 units; g = -100 units.
Is there an agreement between theory and simulation?

5.8. Inclined Throw 
The Experiment
The inclined rod, seen in the video, is hold under tension by two strong springs. When re-
leased, the top of the rod hits the ball and after quite a few tryouts with different starting 
positions and different inclinations the ball reached the basket and made a point.

 Fig 5.9.:  Video at http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/incl_throw.htm
The next simulation repeats this experiment, followed by a numerical solution.
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The Simulation
By changing the horizontal and vertical com-
ponents of the starting velocity, you may try 
to hit the "basket" but as much as possible 
from above, without hitting the "ceiling".
An alternative to trial and error is an ap-
proach based on theory.

 Fig 5.10.:  Simulation 5-inclined-throw
Numerical solution:
To solve numerically the problem posed in the video, the following relations are needed 
and have to be understood:
• For a movement with constant acceleration ac: s = 1/2 g t2; v = g t;  

(s = distance travelled; v = velocity; g = acceleration due to gravity; t = time span)
• For a movement with constant velocity vc: s = v t.
From the principle of superposition it follows that the movement shown in the video and by 
the simulation can be separated in two parts, a vertical throw with constant acceleration and 
a horizontal movement with constant velocity. 
For the two parts of the vertical throw with velocity upward and downward we have: 

s3, t3, v3

s2, t2

s1, t1, v15 m

4 m

3 m

1,5 m

s g
2
--- t2= t 2s

g
-----= v g t=

s1 3 5m,= s2 2m= g 10m
s
----=

t1 0 7, 0 83s,= = t2 0 4, 0 63s,= = v1 g t1 8 3m
s
----,= =
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For the horizontal movement we have:
s3 = 4m; t3 = t1+t2 = 1,46s; v3 = s3/t3 = 4/1,46 = 2,74 m/s
The values for the simulation are:  
s1 = 1250 units; s2 = 450 units; s3 = 1600 units; g = -100 units.
Is there an agreement between theory and simulation?

5.9. A Long Stick and a Ball Dropping Down 
It has been shown that all objects experience the same acceleration when dropping down to 
the earth. If confronted with an experimental setup as seen in the following video, you may 
at first sight assume that the stick and the ball, when released simultaneously, will hit the 
ground at the same moment in time. 

 Fig 5.11.:  Video about a dropping stick and a ball
http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/stick_f.htm

Are you astonished when you observe the outcome of this experiment? (see the video at 
http://www.astrophysik.uni-kiel.de/~hhaertel/CGA/Flv/stick_e.htm)
The puzzling question is: What is the extra force (in addition to gravity), which causes the 
upper end of the stick to accelerate more than the free falling ball?
Stick and Ball (Explanation) 
A first answer is a rather simple one. In this experiment two different cases are compared. 
The ball is under the influence of gravity only and therefore it is in free fall. The inclined 
stick, however, is not only under the influence of gravity but is also in interaction with the 
floor. It is therefore not in free fall and so we should not expect a simple result.
By experimenting with the prepared experiment „Stick and Ball“ you can learn more about 
the processes related with this experiment. 
Stick and Ball (Simulation) 
Similar to the video the simulation "5-falling-stick-ball" allows to compare the free fall of 
a ball and the movement of an inclined stick. The stick is modelled by single particles, 
connected by elastic springs.
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 While the left corner of the stick is fixed, the 
other parts are forced to move on more or less 
circular paths around this fixed point.
Due to the two forces, gravity and the reac-
tion from the floor, the stick is bending and 
increasing elastic forces lead to increased ac-
celeration.
If the elasticity is reduced by applying more 
springs, (simulation "5-falling-stiff-stick-ball") 
the bending is nearly invisible.
The stiffer the stick the better the agreement 
between the experiment and what is shown in 
the simulation.

 Fig 5.12.:  A falling stick and a falling ball 
(simulation "5-falling-stick-ball")

5.10. A Soft Spring Dropping Down
Assume that your neighbour upstairs is bending out of his window and holds the upper end 
of a rather soft spring, a so-called Slinky, in his hand. The Slinky expends under gravity 
and ends up in front of your window, where you only see the lower end of the spring.
The question is: What will happen to this lower end, when your neighbour releases the 
spring? Will it move upwards a little, will it stay for a short while before starting to drop or 
will it immediately start dropping?

 Fig 5.13.:  Video about a dropping elastic spring (a Slinky)
(http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/spring_f.htm) 

Look at the video indicated in fig.5.13 and make up your mind about the question posed.
If you look carefully at the next video (http://www.astrophysik.uni-kiel.de/~hhaertel/
CGA_e/Flv/spring_e.htm), which shows the experiment, you can detect that the lower end 
of the Slinky does not start immediately but only when the spring has nearly collapsed.
This process can be studied in slow motion with the simulation "5-falling-slinky" 
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Simulation "5-falling-slinky"
In this simulation a Slinky is modelled as a se-
quence of particles of equal mass connected by 
short elastic springs of equal spring constant.
The particle on top is fixed.
Since gravity is active the spring is expended un-
der its own weight. The single particle next to the 
lower end of the Slinky does not fall because it is 
fixed. 
If you start the simulation and release the fixed 
particles before, you can observe when the lower 
particle starts falling.

 Fig 5.14.:  Simulation of a falling slinky 
To fix or to release a particle can be controlled inside the "Partlicle Inspector"window

 Fig 5.15.:  How to fix or release a particle 
Result:
The lower particle cannot start to fall immediately because the spring has not yet col-
lapsed and therefore compensates gravity. 

5.11. Concept of Centre of Mass 
With the following simulation the concept of "Centre of Mass" (CoM) is introduced. This 
concept will not be derived from more basic principles but is just demonstrated to show its 
unique property and to motivate for more extended study.
In the simulation "5-centre of mass" the Slinky is modelled as before as a sequence of par-
ticles of equal mass connected by short elastic springs of equal spring constant.
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 The particle on top is fixed. Since gravity is active 
all the springs are expended under the weight of the 
particles.
The white cross in this simulation indicates the so-
called centre of mass of the Slinky. 
The single particle next to the centre of mass of the 
Slinky does not fall because it is fixed.
If you start the simulation and release before the 
fixed particles (fig. 5.11), you can observe that the 
centre of mass moves exactly at the same pace as 
the free falling body.

 Fig 5.16.:  Simulation "5-centre-of-mass"
The general rule is:
The centre of mass of an extended material object behaves under the influence of an exter-
nal force as if all the mass of the extended object is concentrated at this point. Internal forc-
es have no influence on its movement.

The centre of mass of all particles placed inside the 
cube can be visualized inside the "Particle Mamage-
ment" window 

 Fig 5.17.:  How to set the centre of mass



Circular Motion 35
6. Circular Motion 

6.1. Centripetal Force
Newton´s 1st law reads as follows:
Every body remains in its state of rest, or uniform motion in a straight line, unless it is 
compelled to change that state by an applied force.
Important here is the word: "straight line". If a body does not move on a straight but on a 
curved line, its velocity is changing its direction. This is not possible without an applied 
Newtonian force, even if the object moves with constant speed. 
For a homogeneous movement on a circular path, where the curvature is constant, the ap-
plied force F - named centripetal force - is directed in every moment towards the centre of 
the circle.
For the force F, needed for an object to move with constant speed on a circular path the 
following relation can be derived from Newton´s 2nd law as:
• F = m a = m v2/R1  

m = inertial mass of the circulating object 
R = radius of the circular path  
|v| = constant amount of the velocity on the circular path.

The derivation of this equation can be found in any text book.
As already mentioned this force is called „centripetal force“. In every moment it is orient-
ed towards the centre of the circular path. 
What about the well-known „centrifugal force“ oriented towards the outside? 
The following video poses an interesting question related to these two kinds of forces. 

 Fig 6.1.:  Video "ball in a rotating beaker"
(http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/ball_beaker.htm)

Will the ball stay inside or go outside, due to the so-called „centrifugal force“?
More related information is found on the next pages.

1. The derivation of this equation is found in every standard textbook. 
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6.2. Circulating Objects, Connected by an Elastic Spring
The simulation "6-rotation-spring" shows the 
movement of 2 particles, connected by a spring 
and circulating around a common centre.
For moving on a circle with radius R and constant 
speed a centripetal force in needed, oriented to-
wards the centre of the circular path. This force is 
provided by the stretched spring.
If the mass and the amount of the velocity (its 
speed) is changed, the orbit of the two particles is 
no long circular. Mass and velocity can be changed 
in the "Particle Inspector" window (fig. 3.1). The 
same window allows to initiate tracing for a spe-
cific particle or to stop tracing. 

 Fig 6.2.:  Simulation "6-rotation-spring" 
2 objects connected by a spring
Force of Inertia - Centrifugal Force

velocity

velocity

centripetal force

centrifugal
force

centrifugal
force

stretched
spring

As always for acceleration processes, a force 
of inertia as acceleration-reaction force can 
be visualized (fig. 4.3 for all particles to be 
set; fig.4.4 for a selected particle already 
set). 
For circulating movements this force is 
known as "centrifugal force".
Accelerated movement on a straight line can 

be interpreted as an equilibrium between a Newtonian and an acceleration-reaction force. 
The same is possible for movements on a curved path, in this case a circular path. In every 
moment the centrifugal force as an acceleration-reaction force Fa-r is of equal strength as the 
centripetal force FN, a Newtonian force. Both forces act in the same direction but with op-
posite orientation:  
FN = - Fa-r or Fcentripetal = - Fcentrifugal 

Computation
To achieve a circular path of both particles this force has to correspond to the centripetal 
force F = m v2/R needed for each particle to circulate with a velocity |v| around a centre 
with radius R.
The force which the stretched spring applies on both particles can be determined by Hook´s 
law:  
Fspring = s D
(l0 = rest length; l = actual length under tension; s = l - l0; D = spring constant)
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Fspring s D= Fcentripetal m v2

R
-----= R

l0 s+
2

-------------=

s D m v2

R
----- 2m v2

l0 s+
-------------= = v2 s D

2m
----------- l0 s+ =

The settings in the simulation are (in corresponding units): l0=1500; s=100; m=2; D=1;
You may calculate the value for |v| for a circular orbit and compare it with the simulation.
For m 2  or for different spring parameters the relation given above for a circular motion 
is no longer valid. The orbit of the particles is no longer strictly circular.
Video „Ball in a rotating Beaker“ 
In the experiment shown in the video above, the centripetal force on the ball is applied by 
the wall of the beaker and oriented towards the centre. 
When the ball reaches the hole in the wall, this centripetal force disappears. The move-
ment is no longer accelerated and so the centrifugal force - an acceleration-reaction force - 
also disappears. The ball will continue to move on a straight line.
If the width of the hole is not too large the ball will hit the opposite border of the hole 
from the inside and will stay inside of the beaker.

6.3. Objects Moving under Mutual Gravitational Attraction
The simulation "6-rotation mutual-gravity" allows to study the situation where 2 particles 
are rotating on a circular path due to mutual gravitational attraction.

In the starting position the particles are at rest and 
will accelerate towards each other.
If a velocity with opposite orientation is applied to 
each particle in the direction perpendicular to the 
connecting line (in this case the z-direction), the par-
ticles will start moving on orbits around a common 
centre.
For a specific velocity, depending on the applied 
forces and the mass of the particles, a circular orbit 
can be reached.

 Fig 6.3.:  Simulation "6-rotation-mutual-gravity"
The corresponding velocity vcircle for a circular orbit can be found by trial and error. The 
correct value (in suitable units) for the given situation is for the right particle vz= 100, for 
the left particle vz=-100.
The following computation shows how the velocity vcircle, necessary for an exact circular 
orbit, can be determined. 
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Computation of vcircle for a Uniform Circular Motion
Based on the general law of gravity and Newton´s 2nd law the following relation can be 
derived for the path velocity of 2 gravitating objects circulating around a common centre.

Fgravitation 
m1 m2

r2
-------------------= Fcentripetal m1

v2

R
-----= R r

2
---=


m1 m2

r2
------------------- m1

v2

R
----- 2m1

v2

r
-----= = v

 m2

2r
--------------=

For the given simulation we have the following values (in corresponding units):
 = 104; m1 = m2 = 103; R = 5 102; v = 100
The simulation "6-rotation mutual-gravity" demonstrates an agreement between computa-
tion and simulation?

6.4. Movement of an Object in the Coulomb Field of a Central Body
Material objects in space, like earth, moon, the planets, the stars in our galaxy a.o. are al-
ways rotating in one way or the other. The following pages show why such rotation is nec-
essary for system of material objects to be stable in space.
The simulation "6-orbit-coulomb" shows a small ball circulating around an attracting cen-
tral body (mass ratio 1:105). Due to this large ratio, the problem is very much simplified, 
because the movement of the large object is rather small and can be neglected. Both ob-
jects are charged with opposite polarity and are therefore attracting each other. The advan-
tage of such a simulation becomes obvious if the effect of the inertial mass on the resulting 
orbit shall be studied 

The charge of the particles cab be set in the 
"Particle Inspector" window.To simulation such 
an attraction a Coulomb constant has to be set to 
a certain value. This can be done in the "Global 
Parameter" window. In the same window the 
gravitational constant can be set. 

 Fig 6.4.:  How to set or change  
the Coulomb and gravitational constant
In reality, when objects rotate around each other (like moon and earth) due to mutual gravi-
tational interaction, it is not possible to change the attractive force independent of the mass 
of the objects. In the simulation above, however, the attracting force between the particle is 
simulated as a Coulomb force. Therefore such independent variation of attractive force and 
mass is possible. This allows to pose some interesting questions, which could lead to a 
deeper understanding of rotating objects unter mutual attraction. 
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 How will the orbit of the circulating body (in the 
simulation "6-orbit-Coulomb") change if either 
the centripetal force (charge q of the circulating 
object) - directed towards the centre - or its mass 
m or both will be changed, but each time inde-
pendent from each other? 
When will the orbit become narrower, when wid-
er?
When will the orbit stay the same?
Interesting settings are (in suitable units):
q=10;    m=13
q=13;    m=10
q =13;  m=13 or q=50; m=50

 Fig 6.5.:  Simulation "6-orbit-Coulomb"

6.5. Movement of an Object in the Gravitational Field of a Central Body
The simulation "6-orbit-gravity" shows a small ball circulating around a central body, at-
tracted by gravity (mass ratio 1:106). 
At start the velocity is set in such a way that the small body orbits on a circle.

We can also say: The circulating body is attract-
ed by the central body and should drop down to-
wards the centre. However, due to its tangential 
velocity it is always missing it. Therefore the 
small object is permanently free falling.
How will the orbit of the circulating body change 
if its mass is changed?
Will it stay the same, will it become wider or nar-
rower. In case it stays the same, why?

 Fig 6.6.:  Simulation "6-orbit-gravity"

6.6. A Dropping Apple and the Circulating Moon - a Comparison
When an apple drops down from a tree it moves perpendicular to the surface of the earth. 
Taking the earth as a system of reference at rest, the moon is orbiting around the earth on 
a nearly perfect circular orbit. These two movements rely on the same basic law. In the 
following will be shown, where the difference is. 
The simulation "6-compare-apple-moon" shows first a satellite above a central object, for 
instance the earth. Without a tangential velocity is drops down on a straight line towards 
the central body.
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 If the tangential velocity vx is increased stepwise, 
the satellite will move on kind of parabolic paths 
until it finally will start circulating on elliptic orbits 
with a circular orbit as special case
Interesting settings are (in suitable units) 
vx=50; vx=75; vx= 100; vx=150
This simulation should be helpful to find the an-
swer for the following question:
•What kind of common aspect exists between the 
movement of an apple, dropping down from a tree 
and the movement of the moon, circulating the 
earth? 

 Fig 6.7.:  Simulation "6-compare-apple-moon"

6.7. Circulating Satellites on Different Orbits
The simulation "6-orbit-radius" shows a satel-
lite, with a starting velocity of 200 units, and a 
distance from the centre of the central objects of 
400 units. 
If this distance is enlarged, a different velocity 
in needed to reach a circular orbit.
Instead of trying to find this suitable velocity by 
try and error, it is more efficient to do so by 
computation 

 Fig 6.8.:  Simulation "6-orbit-radius"
Computation
As always in mechanics Fc and aR follow Newton's basic law: Fc=m aradial.
For the relation between radial acceleration aradial, velocity |v| and radius of the orbit R we 
have:  
aradial = v2 / R.

For the centripetal force Fc it follows that: 

Fc
m tr Satellite v2

R
-------------------------------------------=

This necessary centripetal force is provided by the gravitational attraction between the satel-
lite and the central body.The gravitational force is given by the universal law of gravity:
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 F1 2 F– 2 1 
m grav 1 m grav 2

R1 2
2

-----------------------------------------------------= =

If applied to a satellite, surrounding a central object we get:

Fearth s– atellite 
m grav earth m grav satellite

R earthcenter satellite 
2

-----------------------------------------------------------------------------=

In doing so we refer to the fact that a spherical body (such as the earth) behaves to the out-
side as if all its mass is concentrated at its centre. The distance therefore must be taken 
from the centre of the central body.
Since  the centripetal force, necessary for a circular orbit is realized by this gravitational 
force we get: 

F earth satellite  Fc=


m grav earth m grav satellite

R2
earthcentre satellite

-----------------------------------------------------------------------------
m inert satellite v2

Rorbit
--------------------------------------------------=

From the fact that inertial and gravitational mass are proportional and measured in equal 
units it follows:


m grav earth

R2
earthcentre satellite

----------------------------------------------------- v2

Rorbit
--------------=

With Rcentre of central object/satellite = Rorbit and solving for v we get:

v  mearth 1
Rearthcentre satellite
--------------------------------------------------=

If velocity v1 and radius R1 for a specific orbit are known and if the velocity v2 for a dif-

ferent radius R2 needs to be calculated, we have: v1 v2 R2 R1= .

Example: From R2/R1 = 2 follows: v2 v1 2= . 

The simulation "6-orbit-radius" allows to check this computation by changing the distance 
between satellite and central object as well as the corresponding starting velocity of the 
satellite. Both parameters can be changed inside the "Particle Inspector" window.
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7. Collision and Conservation of Momentum

7.1. Introduction
The following chapter is centred around collision processes where the term “momentum” 
plays an important role. The term momentum can be defined for any moving object. It is 
indicated as p and is defined as the product of mass m and velocity v: p m v=
Just as with energy there exists a law of conservation of momentum, which has universal 
validity. 
The term “momentum”, which is of high importance within classical as well as modern 
physics, will be introduced and explained by treating collisions processes of particles. 
The video (http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/collision.flv) shows 
such a collision process between 2 solid metallic balls and the smooth transition to a corre-
sponding simulation.

 Fig 7.1.:  Video about collision 
The following simulations allow to study such collision processes in detail. Real experi-
ments with sliders on an air cushion track or solid balls like in the video are the base of 
such simulations and should, if at all possible, precede or accompany any further study.

7.2. Collision with Realistic Objects
The simulation "7-collision-elastic-objects" shows a 
collision between two bodies, modelled as extended 
objects of 4 particles, interconnected by elastic 
springs.
As a normal result of every collision process the col-
liding bodies change their velocity. In addition inter-
nal vibrations are excited and the bodies may start to 
rotate.

 Fig 7.2.:  Simulation of colliding elastic objects
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Rotations and internal vibrations are phenomena which absorb energy and therefore over-
shadow the underlying principles. In order to detect and to understand these basic princi-
ples the collision experiments should to be designed in such a way that rotation is avoided 
and that the effects caused by internal vibrations can be neglected. 
To avoid rotational effects head-on collisions are necessary

Such a head-on collision is shown in the simula-
tion  "7-head-on-collision". If the stiffness of all 
the springs are set to higher values it can be ob-
serves, how internal vibrations can be minimized. 
When the stiffness is high enough, an object can 
be idealized as rigid and internal vibrations can 
be neglected. 
Nevertheless the object has to be completely 
elastic during the collision process. The charac-
terization „rigid body“ therefore has to be taken 
as „very very elastic but very very stiff“. 

 Fig 7.3.:  Simulation "7-head-on-collision"
When the spring constant D is increase it can be observed can the internal vibration can fi-
nally be neglected. 
Interesting settings for D (spring constant) are  
D = 10;   50;   100;   500;   1000; 2000 units.
About the user interface
The spring constant D for all existing springs can be set in the "Spring Properties" win-
dow, to be called from a submenue of the Window menue (main menue line of the 
JavaXYZ-cube). To apply the actual value to all existing springs, the related Button has to 
be activated. .

 Fig 7.4.:  "Spring Properties" window where a common spring constant 
can be applied to all existing springs
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7.3. Collision with Idealistic Rigid bodies - Conservation of Momentum
The mathematical treatment of collision processes is based on the model of the rigid body 
as an idealization, where internal vibrations can be completely neglected.
The particles in the following simulation are modelled as rigid objects. This means that the 
elastic deformation during collision does not use up energy and that no internal vibrations 
can exist.
The collisions with the walls of the cube, however, are modelled as completely inelastic. 
This means that during collision with the walls all energy is absorbed. 
The simulation "7-collision-rigid-objects" allows to study collision processes by changing 
the x-component of the velocity of each particle as well as their mass. 
To explain the outcome of such collision processes, two conservation laws of general va-
lidity have to be accepted: the conservation of energy and the conservation of momentum. 
The derivation of these laws and the definition of energy and momentum is found in any 
standard textbook. 

Normally, when two particles collide, their veloc-
ities are changing. This implies that for every 
single particle its momentum p = m v is also 
changing. However, it will be shown that the to-
tal momentum, the sum of both momentums, is 
constant in every moment in time, in other 
words: momentum is conserved.
In the given simulation (as mentioned above) 
there is an exception when a particle collides 
with the walls of the cube. These walls are mod-
elled as completely inelastic and the cube as hav-
ing an infinitely large mass. Therefore the cube 
can absorb any momentum of the particle by 
moving with an infinitely small velocity to the 
opposite side. 

 Fig 7.5.:  Simulation "7-collision-rigid-objects"
The following table shows the result from some collision processes to demonstrate that 
momentum is conserved. 
To add momentum, it has to be known, that momentum is a vector. 
When defined for one fixed directions, the 2 possible orientations are indicated as positive 
(+) or negative(-). 
The total momentum of 2 particles with +p1 and -p1 is p =+p1 + -p1 = 0. The procedure is 
the same as if velocities with opposite orientations have to be added. 
In the following table some collision processes with different settings have been document-
ed. More such processes can and should be entered to prove the law about conservation of 
momentum. 
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t1 stands for a moment in time before and t2 after collision. The numbers are given in suita-
ble units. 

# m1 v1 
at 
t1

p1 
at
t1

v1 
at 
t2

p1 
at 
t2

m2 v2 
at  
t1

p2
at 
t1

v2 
at 
t2

p2 
at 
t2

p1+p2 
at t1

p1+p2 
at t2

1 1 100 100 0 0 1 0 0 100 100 100 100

2 1 100 100 -100 -100 1 -100 -100 100 100 0 0

3 3 100 300 50 150 1 0 0 150 150 300 300

4 3 100 300 0 0 1 -100 -100 200 200 200 200

5 2 100 200 ? ? 1 0 0 ? ? 200 ?

6 2 100 200 ? ? 1 -100 -100 ? ? 100 ?

7 1 100 100 1000 -100 -105 ? ? ? ?

...

 Fig 7.6.:  measurement protocol of collision processes 
Basic law: 
The total momentum of a system of interacting particles is conserved.
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8. Acceleration and Deceleration through Gravity

8.1. How can a Satellite be Accelerated by a Planet?
Many times it is reported in newspapers and on TV that a satellite first passes a nearby 
planet to increase its speed before it is heading towards its final destination. How is this 
gain of momentum possible?
Why is a satellite accelerated more when it is approaching a planet than it is decelerated 
when it departs after the fly by?
The general law of gravity is indeed one of the most mysterious laws of nature, which is 
known to us. However, there is no doubt that the attractive force between two objects does 
not depend on the direction in space.
The Simulation "8-planet-satellite" offers the possibility to study the question posed above 
in detail. 
In this simulation two spherical bodies (satellite and planet) are shown with a mass ratio of 
1/200000. Mutual gravitation is simulated. 

symmetry axis
= x-axis

d0

d1

starting position at

P(1) at

P(0)

x=350; y=-900;z=-800 

x=350;y=-900;z=800

v(0) = 980 units

 Fig 8.1.:  Simulation "8-planet-satellite"
First case: planet at rest
In this case no gain in momentum can be expected because of the spherical symmetry of 
the gravitational forces. The gain in velocity, while approaching, is balanced by the lost in 
velocity when departing. In agreement with this statement the simulation shows, that the 
satellite - starting at P(0) with v(0) = 980 units - has the same speed when it has reached 
the point P(1) (fig 8.1).
Remark: In order to accomplish a precise measurement, the simulation can be advanced 
stepwise to the point P(1), at which after the fly by the same distance from the planet has 
been reached as at the starting point P(0). 



48
The data for the satellite can be monitored during its fly by, by activating the monitor but-
ton in the "Particle Inspector" window"

 Fig 8.2.:  How to activate to monitor data of a selected particle
Second case: planet is moving
The situation is changed when the planet is not at rest but moving. The direction of this 
movement defines a symmetry axis. Depending on its movement relative to this axis, the 
satellite will either speed up or slow down after having passed the planet. 
Question: Assume that in the situation shown in the figure above the planet moves along 
the x-direction to the right. Will the planet, starting at P(0) with a distance d0 from the 
planet, speed up or slow down after having passed the planet and reached the same dis-
tance d1 = d0 from the planet?

When looking for an answer it may be helpful to consider that the total energy and the to-
tal momentum of the system planet/satellite must be conserved.

8.2. Conservation of Energy and Momentum
When will the satellite accelerate, when decelerate?
This question can be answered on the basis of the laws of conservation of energy and mo-
mentum.
From the law about conservation of energy it follows that the planet must slow down so 
that the satellite can move faster or vice versa.
To draw a conclusion from the law of conservation of momentum two cases have to be 
considered. 
• 1. When approaching the planet the satellite moves in the opposite direction as the plan-

et. In this case the total momentum p is smaller than the momentum of the planet.
• 2. When approaching the planet the satellite moves in the same direction as the planet. In 

this case the total momentum p is larger than the momentum of the planet.
For both cases it is assumed that the momentum of the planet is defined as positive. 
In case 1 the total momentum of the system is being increased due to the change of direc-
tion of the satellite after having passed the planet. Conservation of momentum can only be 
guaranteed if the velocity of the planet is reduced accordingly. And conservation of energy 
implies that the velocity of the satellite must increase.
In case 2 the total momentum of the system would decrease due to the change of direction 
of the satellite after having passed the planet. Conservation of momentum can only be guar-
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anteed if the velocity of the planet is increased accordingly. And this implies that the ve-
locity of the satellite must decrease.
This rather abstract explanation can be enriched by a nore concrete once by making use of 
a simulation. 

8.3. Acceleration of a Satellite caused by a Planet 
The simulation "8-planet-satellite.acceleration" shows again two spherical objects (satel-
lite/planet) with a mass ratio of 1/200000 and mutual gravitational attraction. The planet 
moves with a velocity of 100 units in the positive x-direction 

x-axis

d0

d1

starting
position

P(a)
apex

P(0)

P(1)

 

 Fig 8.3.:  Simulation "8-planet-satellite-acceleration"
The simulation shows that the velocity of the satellite is nearly increased by 200 units, if it 
has reached after flyby the point P(1) with the same distance to the satellite as at P(0). If, 
however, the planet moves with v = -100 units (in the negative x-direction), the velocity of 
the planet is decreased by nearly 200 units when having reached again the same distance to 
the planet as at the starting position (simulation "7-satellite-deceleration").
Remark: In order to accomplish a precise measurement, the simulation can be advanced 
stepwise when approaching the apex P(a) or point P(1).
Explanation
The path of the satellite when passing the planet is hyperbolic.
The simulation is set-up in such a way that this hyperbolic path is symmetrically oriented 
in respect to the x-axis.
When the satellite has reached the apex P(a) the distance between satellite and planet has 
reached a minimum. Until it has reached this point, it is approaching the planet. When it 
has passed this point the distance is increasing.
It follows that at the point P(a) the velocity component of the satellite in the direction of 
the planet - in this case the x-direction - must be the same as the velocity of the planet in 
the x-direction, thus nearly 100 units.
The x-component of the starting velocity of the satellite vx(0) is therefore increased by the 
amount (vx(0) + 100) units and this during flying time from P(0) to P(a). 
For symmetry reasons we can conclude that the same velocity change will occur during the 
flight from P(a) to P(1) where the satellite has reached the same distance to the planet as 
before at P(0).
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The simulation shows that the x-component at P(1) is about 200 units larger than at P(0).
By approaching stepwise the point P(a) you can check that the x-component of the satellite 
velocity takes the value +100 or -100 depending on the orientation of the planet velocity.
And certainly the simulation shows that the speed of the satellite is reduced, compared with 
the starting velocity, if the planet moves in the negativ x-direction. 
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9. Exercises with Satellite Orbits

9.1. Introduction 
Spatial imagery is an important capability and a prerequisite to solve many different prob-
lems in physics, either in so-called „Gedanken-experiments“ or those where moving ob-
jects are involved.
The following videos and assignments are offered as some kind of exercise material, as-
suming that spatial imagery as any other capability can be further developed by repetitive 
training.

9.2. Satellite Orbits in 3d and 2d
The video (http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/sat_polar.htm) shows a 
satellite moving around the earth while its projection perpendicular to the surface of the 
earth is drawn.
Once a satellite is in orbit, the orientation of the plane in which it is orbiting, is stable in 
space while the earth is rotating once in 24 hours around its polar axis. Therefore the pro-
jection of the satellite on the surface of the earth will look like some kind of displaced cir-
cles. The seize of the displacement will depend on the ratio of the time period for one rota-
tion of satellite and earth.
In 3d this process looks kind of simple. The task is now to imagine, which curve will show 
up, if the spherical surface of the earth is represented in 2d as a rectangular map.
The video shows this transformation from 3d to 2d as a continuous process and may help 
to see and understand the relation between these two different representations of the identi-
cal process.

 Fig 9.1.:  Simulation about a polar satellite 

9.3. Orbit of the ISS
In the last video the satellite was crossing over the north and south pole. The polar axis of 
the earth and the orbit of the satellite were therefore lying within the same plane. 
The ISS - International-Space-Station - however, does not follow this orbit. There is a dis-
tinct angle between the plane of its orbit and the polar axis of the earth.
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Try to imagine first, which kind of 
trace will occur when the position of 
the satellite is projected onto the 2-di-
mensional worldmap and play the vid-
eo (http://www.astrophysik.uni-kiel.de/
~hhaertel/CGA_e/Flv/
non_polar_sat.htm) to check your as-
sumptions.

 Fig 9.2.:  Video about a non-polar satellite 

9.4. Geostationary Satellite
In general the orbit of a satellite has the form of an ellipse with the earth at one of its fo-
cus points. A special situation has been reached for the following conditions:
• The orbit of the satellite lies in the same plane as the equator of the earth.
• The orbit is not an ellipse but a circle.
• The radius of the orbit is so large that it takes 24 hours to complete one round.
The satellite under these conditions is geostationary, which means that its projection on the 
surface of the earth does not move but remains on the same spot.
For a computation of the radius for a geostationary satellite see the paragraph "Computa-
tion" below.
When looked at from the earth a geostationary satellite appears under a constant angle and 
can therefore serve for instance as transmitter of TV programs.
Look at the video (http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/geo_1_eng.htm) 
and try to find the answer for the posed question, before you play the next video (http://
www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/geo_2_eng.htm) to check your assump-
tion .

 Fig 9.3.:  Video about a geostationary satellite
It may be a good exercise for training spatial imagery to build a model with a globe and a 
satellite and to see, how this curve as projection on the surface of the globe does develop. 
You may also try to find out which curve will develop, if the orbit of the geostationary 
satellite is deformed slightly to an ellipse.
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Computation of the Radius for a Geostationary Satellite
A geostationary satellite has to complete a full circle in 24 hours. 
The gravitational interaction between earth and satellite has to be equal to the centripetal 
force needed for a circular movement. With this condition the radius R of the orbit of a ge-
ostationary satellite can be calculate as follows.

Fgravitation 
m1 m2

R2
-------------------=

Fcentripetal m1
v2

R
-----=


m1 m2

R2
------------------- m1

v2

R
-----= v 2 R

t
---------------=


m2

R2
------- 42R

t2
-------------= R3  m2 t2 

42
-----------------------=

 6 7, 10 11– m3

kgs2
-----------= m2 6 1024kg= t 60 60 24  86400s= =

R3 6 7, 6 75 
4 9 8,

---------------------------10 11– 24 8+ + 76 9, 1021m3==

R ~ 4,3 107m = 43000km;     
Rearth ~ 6300 km; DistanceEarth surface - satellite ~ 36700 km

9.5. Molniya Satellite
On the upper northern hemisphere the normal geostationary satellites are not visible. The 
video (http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/molnya_eng.htm) shows 
how the orbits of the so-called Molniya satellites have been selected to serve during parts 
of their orbit as nearly geostationary satellites. 

 Fig 9.4.:  Video about a Molniya satellite
Three of such satellites in a row are sufficient to serve for a continuous transmission. 
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10. Oscillating Motion

10.1. General Properties
Every system which can perform an oscillating motion, has two general properties:
• 1. It has an equilibrium position.
• 2. When the system leaves this position, restoring forces seek to drive the system back 

to equilibrium.

10.2. Harmonic Oscillator
A special case of an oscillating movement is defined as harmonic if the restoring forces are 
proportional to the distance from the equilibrium position.
According to Hook’s law the following proportion exists between the elongation of a 
spring s and the resulting force:
F=D s (D = spring constant)
This linear relation is in fact the condition stated above for the existence of an harmonic 
oscillation. A spring is therefore capable of driving an harmonic oscillation.
The simulation „10-harmonic-oscillation“ demonstrates such an oscillation, driven by a 
spring. An important parameter for an oscillation is the time period for one cycle, indicat-
ed as T. 

When changing D and m, preferably in a systemat-
ic manner, the dependence of T on m and D 
(spring constant) can be derived and should, when 
ever possible, be checked by corresponding real 
experiments.
For further explanations see next chapter. 
The mass of the oscillating object can be change in 
the „Particle Inspector“ window. 
The spring constant D can be changed for a select-
ed spring in the "Spring Editor" window.

 Fig 10.1.:  Simulation "10-harmonic-oscillation"
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 A spring can be set between two particles by 
1. keeping the shift-key down and 
2. by selecting one particle with the left mouse button 
down and release the button on top of the other particle. 

 Fig 10.2.:  Spring Editor window
If this procedure is repeated over an existing spring the "Spring Editor" window opens, 
where spring parameters can be set. 

10.3. Harmonic Oscillator and Uniform Circular Motion
The simulation "10-ho-circular-motion" demonstrates that a clear similarity exists between 
the movement of an harmonic oscillator and a uniform circular movement.
The movement of an harmonic oscillator can be defined as a linear projection of a uniform 
circular movement.

A
m

pl
itu

de
 A

R

 Fig 10.3.:  Harmonic oscillation and uniform circular motion
For a uniform circular movement we have:
Period T = 2  R / v     |v| = constant velocity (speed) of the circling object
As centripetal force we have:
Fc = m v2 / R
Since both objects have the same vertical position at any time, the forces, driving in verti-
cal direction, must be equal at any time. Therefore we have for the highest or lowest posi-
tion:
Fc = Fmax = D A

With R = A we get by substitution and re-arrangement
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D A m v2

A
--------------= A m D v=

v A
m D

-----------------= T 2A
v

---------- 2 m D= =

This proves in accordance with the simulation "10-harmonic-oscillation" the relation: 
T m D .
This relation also proves that the time T needed for one cycle is independent of the ampli-
tude and therefore also independent of the velocity with which an object starts from the 
equilibrium position.

10.4. Harmonic Oscillator - Amplitude and Period
As stated above, the time T needed for an oscilla-
tion is independent of the velocity with which an 
object starts from the equilibrium position.
Although this is exactly true only for harmonic 
oscillators, we can use this principle to approxi-
mate the motion of other vibrating objects.
If a wine glass is struck, for example, it starts os-
cillating and transfers this motion to the sur-
rounding air. We hear these vibrations as a sound 
with a higher or lower pitch, depending on how 
fast the glass is vibrating.

 Fig 10.4.:  Simulation "10-oscillation-amplitude"
The pitch, which is related to the duration of one oscillation, is the same, regardless of the 
force, with which the glass was struck. A specific glass (with the same content) will al-
ways produce a tone of the same pitch.
In general: The time period for one oscillation T or its frequency f (number of oscillations 
per time unit) does not depend on the amplitude.
This time period T is a property of the system, determined by the mass m of the oscillat-
ing object and the constant D of the restoring forces.
The simulation "10-oscillation-amplitude" demonstrates this statement. 

10.5. Movement of a Pendulum
The movement of a pendulum is interesting under several different aspects.
• For a long time this movement was used to divide the continuous flow of time into 

equal intervals and thus to run clocks.
• The restoring forces, driving the pendulum back and forth, come close to the condition, 

which is set up for harmonic oscillations.
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• Since a pendulum moves along a circle, centripetal forces are involved.
• A pendulum is driven by gravity, and therefore certain analogies to the motion of a free-

ly falling body can be found.
All these aspects make the pendulum to an interesting object for studying these laws and 
phenomena in an integrated manner.

10.6. Mass of the Bob m and the Period for one Oscillation T
The two simulations "10-mass-Coulomb" and "10-mass-gravitation" are both simulating a 
movement of a pendulum. They differ in the kind of the acting force. In the first simulati-
on the force is produced by an electrostatic field, oriented downwards (in -z-direction) ac-
ting on a charged bob. In the second simulation a gravitational field is acting on a neutral 
bob. Interesting and instructive is the difference which shows up, if the mass of the bob is 
changed. In the first simulation the mass has a strong influence on the period of the pendu-
lum, in the second simulation the period is independent of the mass. 
Remark:

The tiny trembling motion, which appears with larg-
er changes of the mass are due to the fact, that with 
such changes the elastic suspention is no longer in 
equilibrium between the gravitational force down-
wards and the centripetal force upwards.

 Fig 10.5.:  Simulation "10-mass-Coulomb" 
or "10-mass-gravitation"

The explication, why the period of a pendulum is independent of the mass of the bob is 
given by the influence of the gravitational mass. In case of a gravitational pendulum the 
gravitational mass compensates the influence of the inertial mass. In a pure electrostatic 
pendulum, however, the gravitational mass is missing and the allways existing inertial mass 
shows its influence. 
The fact that the period of a pendulum is independent of the mass of its bob can easily be 
checked with rather simple experimental means. 
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10.7. Pendulum as „Harmonic Oscillator“
The simulation "10-pendulum harmonic-oscillator"
allows to compare the movement of a pendulum 
and an harmonic oscillator.
In the starting position the setup is done in such a 
way that both movements are very similar.
A pendulum therefore behaves nearly like an har-
monic oscillator.

 Fig 10.6.:  Simulation "10-pendulum-ho"
However, there is an interesting difference in respect to the influence of the mass of the 
swinging bodies.
If the mass of the swinging objects is changed, an important difference in behaviour shows 
up. Small changes of 20% or 40% are sufficient to see the difference. 
Result: While the period T of the harmonic oscillator depends on the mass of the swinging 
objects, the period for the pendulum does not. Why?
The explanation can be found in the different type of force which drives the oscillating 
movement.
For the harmonic oscillator the elastic force of the spring remains the same when the iner-
tial mass is changed.
For a pendulum the driving force is the gravitational attraction of the earth. This force is 
increased proportional to the inertial mass of the bob, because inertial and gravitational 
mass are strictly proportional. An enlarged inertial mass and an enlarged force neutralize 
themselves mutually and this is the reason why the period of the pendulum is independent 
of the mass of the bob.

10.8. Pendulum Period T and Length of Suspension
It was an important fact for building pendulum clocks, that the accuracy of the clock did 
not depend on the mass of the bob. Therefore the form and mass of this bob could have 
any seize and was free to be designed at will.
How could the accuracy of such a clock be changed, if it proceeded or followed?
The answer: By changing the length of the suspension.
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 The prepared simulation "10-pendulum-length" 
shows three pendula which differ in length of the 
suspensions by 5% and 10% respectively.
Clearly the periods are different. This effect can 
quite easily be checked by a real experiment.
The relation between the time for a full swing, the 
period T, and the length of the suspension l can be 
derived from theoretical considerations as:T l

The simulation "10-pendulum-different-length" 
demonstrates this kind of relation.

 Fig 10.7.:  Simulation "10-pendulum-length"
The ratio of the length of the 2 suspensions is 
l1 / l2 = 4.

The ratio of the periods is T1 T2 4 2= = .

 Fig 10.8.:   
Simulation "10-pendulum-different_length"


