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6. Circular Motion 

6.1. Centripetal Force

Newton´s 1st law reads as follows:

Every body remains in its state of rest, or uniform motion in a straight line, unless it is 
compelled to change that state by an applied force.

Important here is the word: "straight line". If a body does not move on a straight but on a 
curved line, its velocity is changing its direction. This is not possible without an applied 
Newtonian force, even if the object moves with constant speed. 

For a homogeneous movement on a circular path, where the curvature is constant, the ap-
plied force F - named centripetal force - is directed in every moment towards the centre of 
the circle.

For the force F, needed for an object to move with constant speed on a circular path the 
following relation can be derived from Newton´s 2nd law as:

• F = m a = m v2/R1 
m = inertial mass of the circulating object
R = radius of the circular path 
|v| = constant amount of the velocity on the circular path.

The derivation of this equation can be found in any text book.

As already mentioned this force is called „centripetal force“. In every moment it is orient-
ed towards the centre of the circular path. 

What about the well-known „centrifugal force“ oriented towards the outside? 

The following video poses an interesting question related to these two kinds of forces. 

 Fig 6.1.:  Video "ball in a rotating beaker"
(http://www.astrophysik.uni-kiel.de/~hhaertel/CGA_e/Flv/ball_beaker.htm)

Will the ball stay inside or go outside, due to the so-called „centrifugal force“?

More related information is found on the next pages.

1. The derivation of this equation is found in every standard textbook. 
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6.2. Circulating Objects, Connected by an Elastic Spring

The simulation "6-rotation-spring" shows the 
movement of 2 particles, connected by a spring 
and circulating around a common centre.

For moving on a circle with radius R and constant 
speed a centripetal force in needed, oriented to-
wards the centre of the circular path. This force is 
provided by the stretched spring.

If the mass and the amount of the velocity (its 
speed) is changed, the orbit of the two particles is 
no long circular. Mass and velocity can be changed 
in the "Particle Inspector" window (fig. 3.1). The 
same window allows to initiate tracing for a spe-
cific particle or to stop tracing. 

 Fig 6.2.:  Simulation "6-rotation-spring"
2 objects connected by a spring
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As always for acceleration processes, a force 
of inertia as acceleration-reaction force can 
be visualized (fig. 4.3 for all particles to be 
set; fig.4.4 for a selected particle already 
set). 

For circulating movements this force is 
known as "centrifugal force".

Accelerated movement on a straight line can 
be interpreted as an equilibrium between a Newtonian and an acceleration-reaction force. 
The same is possible for movements on a curved path, in this case a circular path. In every 
moment the centrifugal force as an acceleration-reaction force Fa-r is of equal strength as the 
centripetal force FN, a Newtonian force. Both forces act in the same direction but with op-
posite orientation: 
FN = - Fa-r or Fcentripetal = - Fcentrifugal 

Computation

To achieve a circular path of both particles this force has to correspond to the centripetal 
force F = m v2/R needed for each particle to circulate with a velocity |v| around a centre 
with radius R.

The force which the stretched spring applies on both particles can be determined by Hook´s 
law: 
Fspring = s D

(l0 = rest length; l = actual length under tension; s = l - l0; D = spring constant)
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The settings in the simulation are (in corresponding units): l0=1500; s=100; m=2; D=1;

You may calculate the value for |v| for a circular orbit and compare it with the simulation.

For m 2  or for different spring parameters the relation given above for a circular motion 
is no longer valid. The orbit of the particles is no longer strictly circular.

Video „Ball in a rotating Beaker“ 

In the experiment shown in the video above, the centripetal force on the ball is applied by 
the wall of the beaker and oriented towards the centre. 

When the ball reaches the hole in the wall, this centripetal force disappears. The move-
ment is no longer accelerated and so the centrifugal force - an acceleration-reaction force - 
also disappears. The ball will continue to move on a straight line.

If the width of the hole is not too large the ball will hit the opposite border of the hole 
from the inside and will stay inside of the beaker.

6.3. Objects Moving under Mutual Gravitational Attraction

The simulation "6-rotation mutual-gravity" allows to study the situation where 2 particles 
are rotating on a circular path due to mutual gravitational attraction.

In the starting position the particles are at rest and 
will accelerate towards each other.

If a velocity with opposite orientation is applied to 
each particle in the direction perpendicular to the 
connecting line (in this case the z-direction), the par-
ticles will start moving on orbits around a common 
centre.

For a specific velocity, depending on the applied 
forces and the mass of the particles, a circular orbit 
can be reached.

 Fig 6.3.:  Simulation "6-rotation-mutual-gravity"

The corresponding velocity vcircle for a circular orbit can be found by trial and error. The 
correct value (in suitable units) for the given situation is for the right particle vz= 100, for 
the left particle vz=-100.

The following computation shows how the velocity vcircle, necessary for an exact circular 
orbit, can be determined. 
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Computation of vcircle for a Uniform Circular Motion

Based on the general law of gravity and Newton´s 2nd law the following relation can be 
derived for the path velocity of 2 gravitating objects circulating around a common centre.
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For the given simulation we have the following values (in corresponding units):

 = 104; m1 = m2 = 103; R = 5 102; v = 100

The simulation "6-rotation mutual-gravity" demonstrates an agreement between computa-
tion and simulation?

6.4. Movement of an Object in the Coulomb Field of a Central Body

Material objects in space, like earth, moon, the planets, the stars in our galaxy a.o. are al-
ways rotating in one way or the other. The following pages show why such rotation is nec-
essary for system of material objects to be stable in space.

The simulation "6-orbit-coulomb" shows a small ball circulating around an attracting cen-
tral body (mass ratio 1:105). Due to this large ratio, the problem is very much simplified, 
because the movement of the large object is rather small and can be neglected. Both ob-
jects are charged with opposite polarity and are therefore attracting each other. The advan-
tage of such a simulation becomes obvious if the effect of the inertial mass on the resulting 
orbit shall be studied 

The charge of the particles cab be set in the 
"Particle Inspector" window.To simulation such 
an attraction a Coulomb constant has to be set to 
a certain value. This can be done in the "Global 
Parameter" window. In the same window the 
gravitational constant can be set. 

 Fig 6.4.:  How to set or change 
the Coulomb and gravitational constant

In reality, when objects rotate around each other (like moon and earth) due to mutual gravi-
tational interaction, it is not possible to change the attractive force independent of the mass 
of the objects. In the simulation above, however, the attracting force between the particle is 
simulated as a Coulomb force. Therefore such independent variation of attractive force and 
mass is possible. This allows to pose some interesting questions, which could lead to a 
deeper understanding of rotating objects unter mutual attraction. 
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 How will the orbit of the circulating body (in the 
simulation "6-orbit-Coulomb") change if either 
the centripetal force (charge q of the circulating 
object) - directed towards the centre - or its mass 
m or both will be changed, but each time inde-
pendent from each other? 

When will the orbit become narrower, when wid-
er?

When will the orbit stay the same?

Interesting settings are (in suitable units):

q=10;    m=13

q=13;    m=10

q =13;  m=13 or q=50; m=50

 Fig 6.5.:  Simulation "6-orbit-Coulomb"

6.5. Movement of an Object in the Gravitational Field of a Central Body

The simulation "6-orbit-gravity" shows a small ball circulating around a central body, at-
tracted by gravity (mass ratio 1:106). 

At start the velocity is set in such a way that the small body orbits on a circle.

We can also say: The circulating body is attract-
ed by the central body and should drop down to-
wards the centre. However, due to its tangential 
velocity it is always missing it. Therefore the 
small object is permanently free falling.

How will the orbit of the circulating body change 
if its mass is changed?

Will it stay the same, will it become wider or nar-
rower. In case it stays the same, why?

 Fig 6.6.:  Simulation "6-orbit-gravity"

6.6. A Dropping Apple and the Circulating Moon - a Comparison

When an apple drops down from a tree it moves perpendicular to the surface of the earth. 
Taking the earth as a system of reference at rest, the moon is orbiting around the earth on 
a nearly perfect circular orbit. These two movements rely on the same basic law. In the 
following will be shown, where the difference is. 

The simulation "6-compare-apple-moon" shows first a satellite above a central object, for 
instance the earth. Without a tangential velocity is drops down on a straight line towards 
the central body.
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 If the tangential velocity vx is increased stepwise, 
the satellite will move on kind of parabolic paths 
until it finally will start circulating on elliptic orbits 
with a circular orbit as special case

Interesting settings are (in suitable units) 

vx=50; vx=75; vx= 100; vx=150

This simulation should be helpful to find the an-
swer for the following question:
•What kind of common aspect exists between the 
movement of an apple, dropping down from a tree 
and the movement of the moon, circulating the 
earth? 

 Fig 6.7.:  Simulation "6-compare-apple-moon"

6.7. Circulating Satellites on Different Orbits

The simulation "6-orbit-radius" shows a satel-
lite, with a starting velocity of 200 units, and a 
distance from the centre of the central objects of 
400 units. 

If this distance is enlarged, a different velocity 
in needed to reach a circular orbit.

Instead of trying to find this suitable velocity by 
try and error, it is more efficient to do so by 
computation 

 Fig 6.8.:  Simulation "6-orbit-radius"

Computation

As always in mechanics Fc and aR follow Newton's basic law: Fc=m aradial.

For the relation between radial acceleration aradial, velocity |v| and radius of the orbit R we 
have: 
aradial = v2 / R.

For the centripetal force Fc it follows that: 

Fc

m tr Satellite v
2

R
-------------------------------------------=

This necessary centripetal force is provided by the gravitational attraction between the satel-
lite and the central body.The gravitational force is given by the universal law of gravity:
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If applied to a satellite, surrounding a central object we get:
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2
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In doing so we refer to the fact that a spherical body (such as the earth) behaves to the out-
side as if all its mass is concentrated at its centre. The distance therefore must be taken 
from the centre of the central body.

Since  the centripetal force, necessary for a circular orbit is realized by this gravitational 
force we get: 
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From the fact that inertial and gravitational mass are proportional and measured in equal 
units it follows:
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With Rcentre of central object/satellite = Rorbit and solving for v we get:

v  mearth 1
Rearthcentre satellite
--------------------------------------------------=

If velocity v1 and radius R1 for a specific orbit are known and if the velocity v2 for a dif-

ferent radius R2 needs to be calculated, we have: v1 v2 R2 R1= .

Example: From R2/R1 = 2 follows: v2 v1 2= . 

The simulation "6-orbit-radius" allows to check this computation by changing the distance 
between satellite and central object as well as the corresponding starting velocity of the 
satellite. Both parameters can be changed inside the "Particle Inspector" window.
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