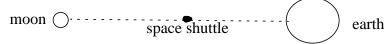
CoLoS

Fall 1999

Test about force and motion

Date:


Name:

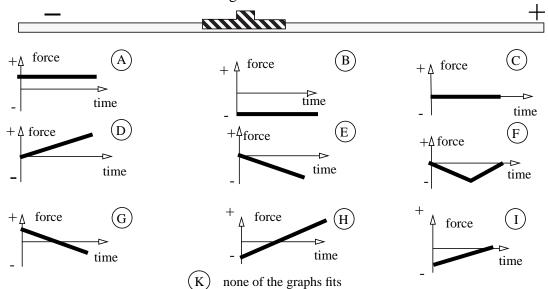
Age:

Class:

Part 1

A space shuttle is moving on a straight path from the earth to the moon or in the opposite direction. The shuttle is jet-propelled.

Below 6 situations are described and the question is about the related total force. Please mark each of the described situations with one of the letters A to K, which to the best of your knowledge gives the correct answer.


moon	direction of total force earth	 The sum of all applied forces on the shuttle is directed towards the earth and A is constant B is increasing in magnitude C is decreasing in magnitude
moon	direction of total force earth	 The sum of all applied forces on the shuttle is directed towards the moon and D is constant E is increasing in magnitude F is decreasing in magnitude
		G in total no force is neededK no answer is valid

Situations:

1.	The shuttle is moving towards the moon. It's velocity is increasing linearly (constant acceleration).
2.	The shuttle is moving towards the moon with constant velocity in the same direction.
3.	The shuttle is moving towards the earth. It's velocity is decreasing linearly (constant acceleration).
4.	The shuttle is moving towards the earth. It's velocity is increasing linearly (constant acceleration).
5.	The shuttle has been started from earth and accelerated until it has reached a fixed (constant) velocity. What kind of force is needed for an ongoing movement with this velocity?
6.	The shuttle is moving towards the moon and slows down linearly (constant acceleration).

Part II

A slider is moving on an air cushion track, either to the right (+) or to the left (-). Since the slider is hovering and takes on only small velocities, all effects due to friction forces and air resistances can be neglected.

A force can be applied to the slider in horizontal direction. Please mark each of the following situations 7 to 14 with one of the offered force/time-diagrams A to K, which shows how the force on the slider varies with time.

Situations:

7.	The slider moves to the right with a fixed (constant) velocity
8.	The slider moves to the right and its velocity is increasing linearly
	(constant acceleration)
9.	The slider moves to the left (in the negative direction) with a fixed
	(constant) velocity.
10.	The slider moves to the right and its velocity is decreasing linearly
	(constant acceleration).
11.	The slider moves to the left and its velocity is increasing linearly
	(constant acceleration).
12.	The slider moves to the right and its velocity is first decreasing
	and then increasing.
13.	The slider was first pushed to the right and then left alone.
	Which diagram describes the applied force after this moment?
14.	The slider moves to the left and its velocity is decreasing linearly
	(constant acceleration)